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ABSTRACT

There are derived sufficient conditions for the positivity
of Green's function of two-point boundary value problems of the
fourth order. The results are gained by applying a theorem on
inverse-monoton ¢ operators in partially ordered spaces. 1In the
case of an example (beam on elastic support), the derived

conditions are also necessary.



1. INTRODUCTION

Let there be given a differential equation
L{u] = aL(x)uIv+...+ a.l(x)u' + ao(x)u =r(x) (0<£xZ<1), (1.1)

together with four linearly independent boundary conditions

3
U, [u] = 2 ay, w® (o) = 0 (1=1,2),
k=0
(102)
V] = ﬁ B, u9(1) = 0 (1=1,2).

k=0
Suppose that the coefficients ai(x) are continuous and that aL(x)

is positive in [0,1].

The corresponding Green's functiorn G(x,§) exists and
satisfies
G(x,8) >0 (0<x% <1)

if and only if for each ue¢ C 4[0,1] the following is trues The

relations

LluJ(x) >0 (0¢x<1)
Ulul =0 (1=1,2 imply u(x) 20 (0< x<1). (1.3)
Vi[u] =0 (1=1,2

This paper yields sufficlent conditions for this property.

We need some more restrictive conditions concerning the differenti-



ability of the coefficients ai(x) which differ from case to
case. For simplicity, we will assume that the coefficlents are
analytic. We then need prove (1.3) only for analytic u(x).--
Results which require weaker assumptions can be gained by a limit
procedure.

For second order boundary value problems, the corresponding
property has been treated by several authors. Most of the proofs
use the fact that the first and second derivatives of e function
have to satisfy certain necessary conditions at a point where this
function assumes a relative extremum. These conditions are used to
derive contradictions. There is no straightforward generalization
of such methods to fourth order problems because ncthing can be seid
about higher derivatives at an extremum. Thus, the proof has to be
different.

But also the facts are different. For example, the Green's

function of the problem

-u" + cu = r(x) (0<x<1),

with constar.. ¢ 1s non-negative for all c¢ > -112, while it does not

exist for ¢ = -n? (eigenvalue) .

The Green's function of the problem

uIV+cu=r(x) (0<x<1),

(1.4)
u(0) = u"(0) =u(l) =u"(1) =0
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wvith constant ¢ exists for ¢ > -m*. It is non-negative for
a certain c-interval -nl‘ {c( Sy but for no larger interval.
The occurrence of such an upper bound for the coefficient c(x)
is typical for fourth order problems. For our example (1.4), this
behavior is plausible because of the physical meaning of the

problem (see Section 5).

There have been treated some "trivial" cases of fourth order :

problems, such as

tu] =ulV = ()  (0¢<x<1), (1.5)

u(0) = u"(0) = u(l) = u"(1) = 0.

This problem can be split into two second order problemss !

v(1l) = 0.

-v" = r, v(0)

A" = v, u(0) =u(l) = 03

and the conclusion ist r(x) > 0= v(x) > 0 = u(x) > 0. This simple
splitting with v = -u", however, cannot be used in more general
cases, for example, nelther for the problem (1.4) with ¢ > 0,

nor for the differential equation (1.5) and the boundary conditions
u(0) =u'(0) =u(l) =u'(1l) =0,

In Section 2, we generalize the method of splitting just

mentioned, and then apply a general 't.heorem1

17, Schrders Monotonie-Eigenschaften bei Differentialgleichungen,

ArChc Ratiom MGCho Ana.lo ]ﬁ’ 38-60 (1963)0
See alsot Differential Inequalities and Error Bounds, D1-82-0424,

Boeing Scientific Research Laboratories, Seattle, Washington (1965).



on inverse-monotonic operators to the split problem. The

behavior of the splitting at the boundary points is very imnnrtant
(Section 3). The resulting theorem (Section 4) contains sufficient
conditions for the property (1.3) which can be checked in each
particular case if a splitting 1s given. These conditions turn out

to be necessary in case of the exauple (1.4) (Section §).

In a later paper different sufficient conditions will be
derived from the theorem. These conditions will suggest
how to choose an appropriate splitting. The connection to necessary

conditions will also be discussed in the later paper.

2. SPLITTING OF THE DIFFERENTIAL JPERATOR

In this Section 2, we first consider the operator L[u] in the
open interval (0,1), to avoid lengthy considerations concerning the
boundary behavior of certain functions. All functions which occur, as
u(x), pi(x),..., shall be defined and analytic in (0,1). A function

of this kind is called positive if it has values >0 for 0<{ x< 1.

We will derive second order differential operators

=5
—
—
[
-
1

= pz(x)u" + pl(x)u' + po(x)u,
(2.1)

-
N
—
<
——d
"

Ax(X) V" + gq (0¥ + q(x)v
with

Po(x) <0, qy(x) <0 (0 < x<1) (2.2)




such that in the interval (0,1)

LZ[LliuJ] = w(x)[ L{u] + q(x)u] (2.3)

for all (analytic) wu(x), and some fixed functions q(x) and
w(x). The inequalities (2.2) imply

w(ix) D0 (0<x<1). (2.4)

Such operators I, and L, are said to split the operator

L in the interval (0,1), or to form a splitting {2.3) in the

interval (0,1).

For convenience, we use the following notationss

X a, (%) 8,
a=exp/ 234 dat, b=a"-aa—L,
z

a
B=b'+ai, c=a
A

o
=lo

The operatcr L{u] can then be written in the form
a
Llu] = <2 [(au)" - (tu')" + Bu' + cu (2.5)

Lemma a) To each positive function p(x),

p(x) >0 (0<x<1), (2.6)

and each constant ¥, there corresponds a splitting (2.3) in the

open intervals
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Ll[u] = -apu" + ap'u' + (PO +Q, ¢t ¥)u, (2.7)
Lz[v] = -apv" + ap'v' + (P0 -4 - Y)v (2.8)

with 5
o= Heo) hon %= b f s@p@,
£

The corresponding functions w and q are given by

8w = azpz, (2.9)
a2p2q = aA(F -acp2) (2.10)
with
F=f+g,
£i= -apPg + ap'P(') + Pg

g = -apdy + ap'q) - (9,1 .

A splitting of this kind will be called a normal splitting.

b) For every other splitting (2.3) in (0,1) the operator Ly

can be gained by multiplying the corresponding operator of a normal

splitting by a function which is positive in (0,1), and the

corresponding function q 1is identical to the function q belonging

to that norinal splitting.

PROOF:  Each triple of functions p,.p;,p, with negative p2(x)

can be written in the form

Py, = -wpy  p; Swp', Py = Wh, (2.11)
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with positive functions p(x) and w(x).

For a given u, define
V(x) = Bgu + plu - ",  v(x) = Iq[u](x) = w(x) V(x);

and let u(x), B(x), b(x) be the vectors

" V v
ul
U= ‘ , B=| , D= v! .
uI? m W
We then calculate2
gT=uT®, ol:gln=u'Pq
with the matrices
Ly A1 Al
1 = 4+ p" 2“’1 +pmM
P Po*P Py P G
R= P 0 PotP" 1, o=l 0 w a2
0 -p -p! 0 0 w
\ 0 0 -p
2

The superseript T denotes the transposed matrix, respectively,
vector.
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Moreover, using the notations

a 3
3 0
K 9 0
q = ql 9 a = Eil = (lq ’ aQa-= EE ) ¢ = G ) (2012)
= a 0
q2 q2 3
a 0
4
we vrite the relation (2.3) as
TRA = 7T .
u'Ba= y'(wa + qe)) (0<x<1).

This equation is satisfied for all (analytic) u(x) 4if and

only ifs
Pa = w(a + qe) (0<x<1).

For given p, 50 and w, this last relation is a system of
five linear equations for the unknowns ao, 51, 52 and q. The
last three equations yield

9 8 0 8 gl

51 = l% 0 a, 8, p' (2.13)
p

q2 0 0 af. -p

Inserting these values of the 51 intothe second equation, we

g2t the compatibility condition

2&1"56 + a3§0 + [alp + azp' + a3p" + aAp"'] =0 (2.14)



Finally, the first equation leads to

T "+ Py
qu = (50’56,56) 0 8, &, p' -aop2 e (2.15)
0 0 a, -p

These arguments show, that those operators Ll’L2’ and only those
operators, form a splitting (2.3) in (0,1) that have coefficients which
satisty relations of the form (2.11) through (2.15). Because of (2.14), the
function 50 is determined by p and an integration constant ¥.

Thus, three positive functions p(x), w(x), w(x) and a constant ¥

determine a splitting (2.3).

For w=a and w as given in (2.9) we get the normal splitting
(2.7), (2.8). A different choice of w and w changes Ll[u] by a

positive factor while q(x) 4in (2.15) remains unchanged.

Example The function

yields a normal splitting with

x
-au" + (gb - %/ B(E)dE + Y)u
%
and

a2 1 r \ 3 2
() = dator - g0 o3 T f e af[ <. s
¢ L ¥

1, [u]
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3. THE B30UNDARY BEHAUIOR OF A SPLITTING

from now on, we consider only functions which are analytic

in the closed interval [0,1]. We will say that two operators

Ly L, (2.1) form a splitting (2.3) of L 4in the closed interval,
if (2.3) is true for 0<x <1 and if (2.2) is satigfied for

0 < x <1l. Under the present assumptlions concerning the coefficient
functions, each splitting in the open interval is also a splitting in

the closed interval.

Moreover, we will assume, without loss of generality, that the

boundary operators U, V, in (1.2) have the following form:

Ky |
AEESWENAIC R ANE s B, (D) (11,2 (3.1)
k=0 k=0
with
p'l < P'2 S 3! alp'l = 03*2 = 1’ 02#1 = O’

Dl < U2 s 3, Blul = 62v2 = l, B‘?Dl = Oo

The set of functions which are analytic in [0,1] and which satisfy

the boundary conditions is called R.

Suppose now that there is given a splitting (2.2) in the closed
interval. Let then @y g5 BO’ Bl denote the largest integers such

that for all u e¢ R and the corresponding v = Ll[u], respectivelys

u(i)(O)
u(i)(l)

0 (120,152, ¢+ 4ya,-1),

O (1=O,1,2,...,dl-1),

g v T YT SRy Y vy
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v(i)(o) -
vy =0 (129,152 ¢ +,8y-1) «

(1=o,1,2,...,ao-1), (3.2)

1
(@]

Clearly’
0 Af p >0 0 if v >0

ay= {1 4f w =0 p,>1 e ={1 if ¥ =0, v,>1
2 if p1=0’p2:1 2 if v1=o,v2=10

It is important how the boundury values of the derivatives of
u ¢ R are connected with the corresponding derivatives of

v = Ll[u]. This connection will be deseribed by "boundary matrices".

It 1s sufficient to consider the boundary point x = (. For

each u ¢ R the derivatives v(i)(o) are finite lineer combinations

of the derivatives

(k (k

1) 2)
u (7, u () with D <Ky <ky 7 ks kJ;/p.

i (i,f; =192))

and the derivatives

‘ J

d .

P00 = (L) 0 012000,
dx

because the other derivatives u(k)(o) with k < 4 can be eliminated

using the boundary conditions. In matrix notation, these relations ean

be written as

v 9} >

0 0 J
— = —— u + = l
(ni)) (ﬂtO) C (EO) 0
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with
(B.)

v(") \ v (9)

. g 7o

v, ={ : =l (g,1)

>\ ey T e
v () / :
(. | (3.3)
u (o) L{u](2)

U = l = '
u (0) \ .

Because of the definition of BO in (3.2), all elements of the

matrices .‘RO and 60 vanish; there is, however, at least one nonzero

element in the first row of E)to or in the first row of @o.

The matrices S)ta, @7 shall be called the Boundary Matrices

at x= 7.

The corresponding boundary matrices 9?1,@1 at x=1 are constructed
by applying the same pro-edure to u, v, £ = L[u] as a function of
X=1-x at X = 9. The boundary matrices are infinite. However, we

will only need a finite part in each case.
Example In case of the boundary conditions
u(l) =u"(0) = u(l) =u"(l) = 2

we have @ =y = 1. For the normal splitting with p(x) =1 (see

the example in Section 2) one derives the following relations at x=03
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v 0 0 000 ...

—_— u'

vl =] so-4p+y -a ( )+ 000...
u'"

7" 0 O ‘100-1-

X
with '8 = f B(E)d¥. From these relations, the first two rows of
the boundargr matrices ERO, @O can readily be obtained. Because

of a >0 we get BO =1 (and similarly B = 1).

L{u]

L'[u]
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4. SUFFICIENT CONDITIONS

Suppose there is given a splitting (2.3) in the closed intervalj
and let ERO, @o, ml’ @1 be the corresponding boundary matrices. As

before, let R denote the set of analytic functions on [0,1] which

satisfy the boundary conditions.

For vectors u= (ui) of any finite or countable dimension we

define two order relationss

u1 > 0 and

u>o0 iff
0 > 0 in case ul =ul= ...ui-l =0, (1=2,3,004y)

uS0 iff  ur > o

Using these notations, we can state the basic theorem:

THECREM s
a) Let the coefficient q(x) of the given splitting (2.3) be

nonnegatives

a(x) >0 (0 < x<1). (4.1)

b) Suppose that for arbitrary vectors u, b, [ of suitable

dimensions the reletions

b=9tou + @Ol

u>o0, v>0, [ 0 imply uPo, v »0 (4.2)

and suppose that the same statement is true for ml’ @1 instead of

RS, -
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Then, for arbitrary functions u e¢ R the relation

u(x) >0 (0 x<1)
L{ul(x) >0 (0< x<1) 4implies

Ll[u](x) >0 (0<x<1)

if and only if there exists a function 2z ¢ R such that

PROOF: We first prove that the conditions (4.4), (4.5) are

sufficient provided the assumptions a) and b) are satisfied.

(4.3)

(4.4)

(4.5)

For this, we apply a theoreml on abstract operators M mapping

a partially ordered space R into another partially ordered space S.

Let R = {u,v,...} Dbe as above and define

s = {U,V,...} = ¢c[0,1],

M: = L[u](x).

Define, moreover, for u ¢ R, U ¢ S, respectively:
u(x) >0 (0<x<1),

v(x) >0 (0<{x< )3
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u(x) >0 (0 ¢<x<1), v(x) >0 (0<¢x<1),
(ap) (B
udnsiff (u (0) > o, v ~(0) >0,
a, (o) B, (B
(-1) 2w (1) >0 (-1) v 1)(1) > 0y

where v = Ll[u](x) and the indices ¥ BO, @ s Bl are given
in (3.2);

U0 ¢ 4iff U(x) >0 (0<x<1);

U0 ¢ 4ff U(x) >0 (0<x<1).
Then the conclusion (4.3) in the theorem is equivalent to

Mi >0 implies u >0 (u ¢ R)®

(4.6)

According to the abstract theorem mentioned above, this implication

is true if the operator M satisfies the following two conditions:

Is The inequalities

u>0 and M »0
together im;ly
u » 0.

IIt There exists 2z ¢ R such that
z >0, Mz 0.
The inequalities in Assumption II are equivalent to the

relations (4.4), (4.5). Therefore, we need only prove that

Assumption I is satisfied.
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Suppose Assumption I is not satisfied. Then, there exlsts

u ¢ R such that

u(x) >0 (0<x<L1),
v(x) =L [ul(x) 20 (0<x<1),
L{ul(x) >0 (0 x<1),

(4.7)

but one of the inequalities on the right-hand side in (4.6) 1s false.

Suppose v(xo) = 0 for some x, ¢ (0,1). Then, v(x) 1is

minimal at x, and therefore v'(xo) = 0, v"(xo) >0, so that

L2[v](xo) = + pz(xo)v"(xo) £ 0.

On the other hand,

L0110 = w(x) L0100 + a(xu(n] >0

because of (2.3), (2.4), (4.1), (4.7); thus, v(xo) =0 is not

possible.
1t u(xo) =0 for some x,e (0,1) we get in a similar way

Ll[u](xo) < 0, while, however, Ll[u](xo) = v(xo) > 0. Thus,

u(xo) > 0.

Consider now x = 0. Because v(x) 1is nonnegative, the

nonvani shing derivative v(i)(o) of lowest order i1 must be non-

negative. That means, the vector bo in (3.3) satisfies bo > 0.

For similar reasons the vector uy in (3.3) satisfies uj > 0.
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Moreover, the vector (. in (3.3) is ¥ 0 because of (4.7).

0
Therefore, "O » 0, bo % 0 as a consequence of Assumption b).
These inequalities are equivalent to the inequalities in (4.6)

which are required for x = 0,

In a similar way, one proves the remaining inequali.ies in
(4.6).

Thus, Condition I 1s satisfied and we have proved that the
existence of 2z 1s sufficient. It is, however, also necessary.
Because, if (4.3) is true, the homogeneous problem corresponding
to (1.1), (1.2) has no nontrivial solution. Therefore, a solutica
of (1.1), (1.2) exsts for r(x) =1, and this solution =z

satisfies (4.5) because of (4.3). This proves the theorem.

Corollary: Suppose, the Assumptions a, b of the Theorem are

satisfied for a certain normal splitting il’ L Then, they are also

2.

L, such that

satisfied for each splitting L

1’

with a function w(x) satisfying

Concerning the proof'

As we have seen in Section 2, the function gq(x) which

occurs in Assumption a of Theorem 1 does not depend on the factor w(x).
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To prove that the Assumption b is also satisfied, one has

to use the fact that

’ v W 0 P v
v! W' W 0 oo v! -
= - with v = wv.

V“ u" a" u O o8 e 7"

Example. For the example which was treated in the preceding
sections, the Assumption (4.1) on q given in (2.16) yields an

upper bound for c(x).

Assumption b) is always satisfied. To prove (4.2), one has only

to show that (4.2) is satisfied for the sections

) (o) +v  -a(0) ) 0
N = S, =
g ( 0 0 ), 0 (-1)

of the matrices SRO, @O instead of the matrices mo, 60 themselves.
This is done by a simple indirect proof. In a simllar wey, one can
show that (4.2) 1s satisfied for 9(1, @1 instead of R, GO'

For illustration and for simplicity, we choose a function =z

with constant fourth derivative:

z = x(1-x)[1 + x(1-x)].

This function yields



20

Ll[z] = x(1-x)2

with

Z=a+ (#-48+ 7)1+ x(1-x))
and

L(z] = 24a+12bx(1-x)+ cz + 2a'z"' + a"z" -(b'-B)z".
Obviously, the conditions (4.4), (4.5) are satisfied if
a = const. > 0, b = const. > 0, B(x) = 0, ¢(x) > O.
In this case, (4.1) is equivalent to
o(x) < =b° (0¢x <),

However, (4.4) and (4.5) are also true if the coefficients are

"sufficiently close" to those just described.

Modified Assumptions. The condition (4.4) can be weakened if

(4.2) is replaced by a somewhat stronger assumption. For exar~"~

one may replace (4.4) by

L[z])(%) > 0 (0< x<1),
L'[z](0) >0 if L[z](0) = O, (4.8)

L'[z](1) >0 1f L[z](1)

"
o

if (4.2) 1s required for all vectors | having the rfollowing property:

1:

[>0; 42>0 1if £ =o. (4.9)



In the proof, the definition of U » 0 then has to be changed
appropriately. These modified assumptions often allow the choice of

simpler functions for z.
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5. 3EAM O.. ELASTIC SUPPORT

The statement (4.3) of the Theorem is stronger than the
Implication (1.3) which we want to prove. For the following
example, however, the existence of a splitting satisfying the
assumptions of the Theorem turns out to be necessary for the

weaker statement, also.

Consider a beam of length 1 under a load r(x), fixed at
both ends without bending moments, and, moreover,supported along its
whole length by an elastic medium with elasticity constant ¢
(Figure 1) . Under suitable assumptions concerning the physical

data, the deviation u(x) of the beam satisfies the equations

u o cu = r(x) (e TR 1)/
u(9) :un(ﬁ)) :u(l) = u"(1) = 0, (5.1)

as long as u(x) >0 (2 <¢x<1). In general, one has to replace

I\

cu by #c(|u] +u).

X ¥

Figure 1
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For small ¢, the deviation u(x) will be nonnegative for
arritrary load r(x) > 0. For large enough ¢, however, and a
load sufficiently concentrated near one end, one has to expect that
the beam rises above its support near the other end, i.e.

u(x) < 0 (see Figure 1).

What 1s the largest elasticity ccnstant ¢ such that for

O’

all ¢ with 0<c < c, and arbitrary load r(x) > O the beam

0
does not rise above its elastic support ? We will show:

cO = LKI’

where «k 1is the smallest positive root of the equation

tan k = tanh k

It suffices to prove that (5.1) ylelds u(x) > 0 (0 { x<1)
for arbitrary r(x) >0 (0 x<1) if 0<e cy» while this

is not true for c¢ = cote with sufficiently small € > 0.

The Theorem of Section 3 can be used to prove that the condition
0<e< cy is sufficient. Choose the normal splitting correspond-

ing to (5.1) with v=0, and
p(x) = sin« [cosh 2x(x-%) - cosh k] - sinh x[cos k¥ - cos 2x(x-%)].

Then, the corresponaing funetion q in (4.1) vanishes identically,



24

/-ﬁplv(m 0 \ / 0 0 o ... \

* 0 0 0 O e

m = % 0 ] @O = _%p"l(O) 0 O ¢ o 0 [}

\ »* 0 / * -8 pm( O) 0 )

where p"{0) > O, pIV(O) <0, and * denotes .lements not needed

explicitly. These matrices (and also the corresponding matrices
ml,el) satisfy (4.2) even if the requirement | $»0 1s replaced
by (4.9).
Therefore, it is sufficient to choose a function 2z which

satisfies the modified condition (4.8) besides (4.5):
z = sinnx.

Because

L

L{z] = (n* + ¢) sin nx,

the condition (4.8) is satisfied if ¢ > 0 (and even for c > -nA).
Proving (4.5) by elementary means is a little bit bothersome. A
following paper will show how such inequalities can be proved in a

certain indirect way.

The value c,. described above is indeed the largest value having

0
the described properties, because the Green's function of the problem

(5.1) belonging to c = Aﬁkz satisfies the following relation for x > Ot

Slxdok) = % sin k c¢osh k -cos k sinh k x2 B O(x3).
coshzk - coszk
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The coefficient of x2 is negative for c = ¢y + € with small

enough € > 9.

For the special case (5.1) the Green's function can be
calculated explicitly, and it can be proved directly that this
function is nonnegative for -114 <c( 5 For example, one may
show this for ¢ = 0 and then vary c¢ continuously. However, we
have also proved, that the Green's functlion is nonnegative in case

of a variable coefficient c(x) satisfying _n* < e(x) < c,

(0 € %< 1)



